Что не является признаком системы. · Сбор информации об объекте, выдвижение гипотез, предмодельный анализ

Существует множество понятий системы. Рассмотрим понятия, которые наиболее полно раскрывают ее существенные свойства (рис. 1).

Рис. 1. Понятие системы

«Система – это комплекс взаимодействующих компонентов».

«Система – это множество связанных действующих элементов».

«Система – это не просто совокупность единиц... а совокупность отношений между этими единицами».

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система (от греч. SYSTEMA, означающего «целое, составленное из частей») представляет собой множество элементов, связей и взаимодействий между ними и внешней средой, образующих определенную целостность, единство и целенаправленность. Практически каждый объект может рассматриваться как система.

Система – это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Система определяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.



Система может проявляться как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Важным средством характеристики системы являются ее свойства . Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство – это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы . Свойства – это внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующиеосновные свойства системы :

· Система есть совокупность элементов . При определенных условиях элементы могут рассматриваться как системы.

· Наличие существенных связей между элементами . Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.

· Наличие определенной организации , что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.

· Наличие интегративных свойств , т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.

· Эмерджентностъ несводимость свойств отдельных элементов и свойств системы в целом.

· Целостность – это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.

· Делимость – возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.

· Коммуникативность . Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.

· Системе присуще свойство развиваться , адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие – объясняет сложные термодинамические и информационные процессы в природе и обществе.

· Иерархичность . Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.

· Важным системным свойством является системная инерция, определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.

· Многофункциональность – способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.

· Гибкость – это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.

· Адаптивность – способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система – такая, в которой происходит непрерывный процесс обучения или самоорганизации.

· Надежность это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.

· Безопасность способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.

· Уязвимость – способность получать повреждения при воздействии внешних и (или) внутренних факторов.

· Структурированность – поведение системы обусловлено поведением ее элементов и свойствами ее структуры.

· Динамичность – это способность функционировать во времени.

· Наличие обратной связи .

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией U1 = F (х, у, t, ...), где U1 – экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F(x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы – это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть Z СД (подпространство) – множество допустимых состояний системы.

Равновесие – способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость – это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.

3. Понятие структуры системы .

Структура системы – совокупность элементов системы и связей между ними в виде множества.Структура системы означает строение, расположение, порядок и отражает определенные взаимосвязи, взаимоположение составных частей системы, т.е. ее устройства и не учитывает множества свойств (состояний) ее элементов.

Система может быть представлена простым перечислением элементов, однако чаще всего при исследовании объекта такого представления недостаточно, т.к. требуется выяснить, что представляет собой объект и что обеспечивает выполнение поставленных целей.


Рис. 2. Структура системы

Понятие элемента системы. По определению элемент – это составная часть сложного целого. В нашем понятии сложное целое – это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент – часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними прояв­лениями в виде связей и взаимосвязей с остальными элемен­тами и внешней средой.

Понятие связи. Связь – совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами – это значит выявить наличие зависимостей их свойств. Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи – совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие – совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Понятие внешней среды. Система существует среди других материальных или нематериальных объектов, которые не вошли в систему и объединяются поняти­ем «внешняя среда» – объекты внешней среды. Вход характеризует воздействие внешней среды на систему, выход – воздействие системы на внешнюю среду.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система – объект анализа (синтеза), а другая – как внешняя среда.

Внешняя среда – набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда – это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Типы структур

Рассмотрим ряд типовых структур систем, использующихся при описании организационно-экономических, производственных и технических объектов.

Обычно понятие "структура" связывают с графическим отображением элементов и их связей. Однако структура может быть представлена и в матричной форме, форме теоретико-множественного описания, с помощью языка топологии, алгебры и других средств моделирования систем .

Линейная (последовательная) структура (рис. 8) характеризуется тем, что каждая вершина связана с двумя соседними При выходе из строя хотя бы одного элемента (связи) структура разрушается. Примером такой структуры является конвейер.

Кольцевая структура (рис. 9) отличается замкнутостью, любые два элемента обладают двумя направлениями связи. Это повышает скорость общения, делает структуру более живучей.

Сотовая структура (рис. 10) характеризуется наличием резервных связей, что повышает надежность (живучесть) функционирования структуры, но приводит к повышению ее стоимости.

Многосвязная структура (рис. 11) имеет структуру полного графа. Надежность функционирования максимальная, эффективность функционирования высокая за счет наличия кратчайших путей, стоимость - максимальная.

Звездная структура (рис. 12) имеет центральный узел, который выполняет роль центра, все остальные элементы системы являются подчиненными.

Графовая структура (рис. 13) используется обычно при описании производственно-технологических систем.

Сетевая структура (сеть) - разновидность графовой структуры, представляющая собой декомпозицию системы во времени.

Например, сетевая структура может отображать порядок действия технической системы (телефонная сеть, электрическая сеть и т. п.), этапы деятельности человека (при производстве продукции - сетевой график, при проектировании - сетевая модель, при планировании - сетевая модель, сетевой план и т. д.).

Иерархическая структура получила наиболее широкое распространение при проектировании систем управления, чем выше уровень иерархии, тем меньшим числом связей обладают его элементы. Все элементы кроме верхнего и нижнего уровней обладают как командными, так и подчиненными функциями управления.

Иерархические структуры представляют собой декомпозицию системы в пространстве. Все вершины (узлы) и связи (дуги, ребра) существуют в этих структурах одновременно (не разнесены во времени).

Иерархические структуры, в которых каждый элемент нижележащего уровня подчинен одному узлу (одной вершине) вышестоящего (и это справедливо для всех уровней иерархии), называют древовидными структурами (структурами типа "дерева"; структурами, на которых выполняются отношения древесного порядка, иерархическими структурами с сильными связями) (рис 14, а).

Структуры, в которых элемент нижележащего уровня может быть подчинен двум и более узлам (вершинам) вышестоящего уровня, называют иерархическими структурами со слабыми связями (рис 14, б).

В виде иерархических структур представляются конструкции сложных технических изделий и комплексов, структуры классификаторов и словарей, структуры целей и функций, производственные структуры, организационные структуры предприятий.

В общем случае термин иерархия шире, он означает соподчиненность, порядок подчинения низших по должности и чину лиц высшим, возник как наименование "служебной лестницы" в религии, широко применяется для характеристики взаимоотношений в аппарате управления государством, армией и т.д., затем концепция иерархии была распространена на любой согласованный по подчиненности порядок объектов.

Таким образом, в иерархических структурах важно лишь выделение уровней соподчиненности, а между уровнями и компонентами в пределах уровня могут быть любые взаимоотношения. В соответствии с этим существуют структуры, использующие иерархический принцип, но имеющие специфические особенности, и их целесообразно выделить особо.

Система - это совокупность элементов произвольной природы, находящихся в отношениях и связях друг с другом, которая образует определённую целостность . Энергия связей между элементами системы превышает энергию их связей с элементами других систем, тем самым формируя систему в качестве целостного образования. Категория системы задаёт онтологическое ядро системного подхода (см. ). Формы объективации этой категории в разных вариантах подхода различны и определяются используемыми теоретико-методологическими представлениями и средствами.

Понятие системы

Исключительное многообразие представлений о системе в человеческом познании порождает стремление редуцирования характеристик системы к некоторому минимуму. При всём разнообразии истолкований, понимание системы в самом общем плане традиционно включает в себя представление о единстве и целостности взаимосвязанных между собой её элементов , то есть предполагает рассмотрение системы как объекта, прежде всего, с точки зрения целого . Семантическое поле такого понимания включает термины «элемент», «целое», «единство», «связь», «взаимодействие», а также «структура» - схема связей между элементами системы (см. ). Структура системы предполагает упорядоченность, организацию, устройство, обусловленные характером взаимоотношений между элементами и её взаимоотношением со внешней средой, в которых проявляются два противоположных свойства системы: ограниченность (внешнее свойство системы) и целостность (внутреннее свойство системы).

Понятие системы имеет чрезвычайно широкую область применения (практически каждый объект может быть рассмотрен как система), поэтому достаточно полное понимание категории системы предполагает построение семейства соответствующих определений - как содержательных, так и формальных. Лишь в рамках такого семейства определений удаётся выразить основные признаки систем и соответствующие им системные принципы:

  1. Целостность - определённая независимость системы от внешней среды и от других систем; определённая зависимость каждого элемента, свойства и отношения системы от его места, функций и так далее внутри целого.
  2. Связность - наличие связей и отношений, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента системы;
  3. Структурность - возможность описания системы через установление её структуры, то есть схему связей и отношений; обусловленность поведения системы не столько поведением её отдельных элементов, сколько свойствами её структуры.
  4. Иерархичность - каждый компонент системы, в свою очередь, может рассматриваться как система, а исследуемая в таком случае система представляет собой один из компонентов более широкой системы.
  5. Функция - наличие целей (возможностей), при этом не являющихся простой суммой целей (возможностей) элементов, входящих в систему; принципиальная несводимость (степень несводимости) свойств системы к сумме свойств её элементов называется эмерджентностью .
  6. Множественность описания каждой системы - в силу принципиальной сложности каждой системы её адекватное познание требует построения множества различных моделей, каждая из которых описывает лишь определённый аспект системы.

Соответственно указанному подходу, общую схему компонентов системы можно представить следующим образом:

  1. Элемент системы. Неделимая часть системы, характеризующаяся конкретными свойствами, определяющими её в данной системе однозначно. Множество составляющих единство элементов, их связей и взаимодействий между собой и между ними и внешней средой, образуют присущую системе целостность, качественную определённость и целенаправленность (целеустремлённость). Число различных элементов и их взаимосвязей, которые включает в себя система, определяют её сложность .
  2. Связи системы. Совокупность зависимостей свойств одного элемента от свойств других элементов системы: односторонних; двусторонних, многосторонних. Связи определяют важный для системы порядок обмена между элементами веществом, энергией, информацией. Простейшими связями являются последовательное и параллельное соединения элементов и положительная и отрицательная обратные связи. В сложных системах особое значение имеют информационные связи, однако не менее важны и энергетические и материальные связи. Сложная совокупность связей в подобных системах образует такое свойство как иерархичность , которая присуща не только строению, морфологии системы, но и её поведению : отдельные уровни системы обусловливают определённые аспекты её поведения, а целостное функционирование оказывается результатом взаимодействия всех её сторон и уровней.
  3. Структура системы. Упорядоченность отношений, связывающих элементы системы, определяет структуру системы как множество элементов, функционирующих в соответствии с установившимися между элементами системы связями. Структуру можно представить как схему - статическую модель системы, которая характеризует только строение системы, не учитывая множества свойств и состояний её элементов. Как правило, при введении понятие структуры систему отображают путём разделения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер. Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания и так далее. При этом, по мере развития исследований или в ходе проектирования структура системы может изменяться. Структуры могут быть представлены в матричной форме, в форме теоретико-множественных описаний, с помощью языка топологии, алгебры и других средств моделирования систем. Наиболее распространены следующие классы структур:
    1. Сетевая структура представляет собой декомпозицию системы во времени. Такие структуры могут отображать порядок действия технической системы (например, телефонная сеть, электрическая сеть и тому подобные), этапы деятельности человека (например, при производстве продукции - сетевой график, при проектировании - сетевая модель, при планировании - сетевой план и тому подобные).
    2. Иерархическая структура представляет собой декомпозицию системы в пространстве. Все компоненты и связи существуют в этих структурах одновременно (не разнесены во времени). Такие структуры могут иметь большее число уровней декомпозиции (структуризации). Структуры, в которых каждый элемент нижележащего уровня подчинён одному узлу вышестоящего (и это справедливо для всех уровней иерархии), называют древовидными структурами, или иерархическими структурами с «сильными» связями. Структуры, в которых элемент нижележащего уровня может быть подчинён двум и более узлам вышестоящего, называют иерархическими структурами со «слабыми» связями.
    3. Матричная структура представляет собой иерархическую структуру со «слабыми» связями, которая базируется на принципе множественной иерархии. Отношения, имеющие вид «слабых» связей между двумя уровнями, построены по функциональному принципу и подобны отношениям в матрице, образованной из составляющих этих двух уровней.
    4. Многоуровневая иерархическая структура представляет собой иерархическую структуру с «сильными» и «слабыми» связями, которая базируется на принципе множественной иерархии. Так, в теории систем М. Месаровича предложены особые классы иерархических структур, отличающиеся различными принципами взаимоотношений элементов в пределах уровня и различным правом вмешательства вышестоящего уровня в организацию взаимоотношений между элементами нижележащего, для названия которых он предложил следующие термины: «страты», «слои», «эшелоны».
    5. Смешанная иерархическая структура представляет собой структуру с вертикальными и горизонтальными связями.
    6. Структура с произвольными связями может иметь любую форму, объединять принципы разных видов структур и нарушать их.
  4. Взаимодействие системы. Процесс взаимного влияния элементов, системы и внешней среды друг на друга, а также совокупность взаимосвязей и взаимоотношений между их свойствами, когда они приобретают характер взаимодействия.
  5. Внешняя среда системы. Всё, что не входит в систему, объединяется понятием «внешняя среда». В сущности, выявление системы есть разделение по определённым основаниям некоторой области материального или абстрактного мира на две части, одна из которых рассматривается как система, а другая - как внешняя среда. Это подразумевает, что внешняя среда представляет собой множество существующих в пространстве и во времени объектов и других систем, которые, как предполагается, действуют на систему тем или иным образом. При этом, между системой и внешней средой существует определённая взаимозависимость - система формирует и проявляет свои свойства в процессе взаимодействия со средой, будучи активным компонентом этого взаимодействия.

Свойства системы

Среди множества свойств, присущих системам, выделяются наиболее важные, характеризующие их функционирование:

  1. Состояние системы. Набор значений основных параметров системы, определяющий характер её функционирования на определённом временном интервале. Состояние системы можно представить как совокупность состояний её n элементов и связей между ними (двусторонних связей не может быть более чем n (n - 1 ) в системе с n элементами). Задание конкретной системы сводится к заданию её состояний на всём протяжении её жизненного цикла. Реальная система не может находиться в любом состоянии, так как всегда есть известные ограничения - некоторые внутренние и внешние факторы. Возможные состояния реальной системы образуют в пространстве её состояний некоторое множество допустимых состояний системы. Определяют состояние системы (в случае систем материальной природы) либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макросвойства системы.
  2. Поведение системы. Если система способна переходить из одного состояния в другое (например, s1 s2 s3 → …), то подразумевается, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности или правила перехода системы из одного состояния в другое. В таких случаях говорят, что система обладает некоторым поведением и выясняют его характер, алгоритм и другие особенности.
  3. Равновесие системы. Способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять своё состояние сколь угодно долго (или на протяжении заданного временного интервала) называют состоянием равновесия.
  4. Устойчивость системы. Под устойчивостью понимают способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (а в системах с активными элементами - внутренних) возмущавших воздействий. Эта способность относительна и обычно присуща системам только тогда, когда отклонения не превышают некоторого предела. Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия. Возврат в это состояние может сопровождаться колебательным процессом. Соответственно, в сложных системах возможны неустойчивые состояния равновесия.
  5. Развитие системы. Каждая система в своём развитии проходит ряд основных этапов:
    1. возникновение;
    2. становление;
    3. преобразование.

    Возникновение системы - сложный противоречивый процесс, связанный с понятием «нового». Этот процесс, в свою очередь, можно разделить на два этапа:

    1. скрытый этап - появление новых элементов и новых связей в рамках старого;
    2. явный этап, когда накопившиеся новые факторы приводят к скачку - появлению нового качества.

    Процесс становления системы связан с дальнейшим количественном увеличением качественно тождественных множеств её элементов и с появлением у системы новых качеств.

    Противоречие между качественно тождественными элементами является одним из источников развития системы. Следствие этого противоречия - стремление элементов разойтись в пространстве. С другой стороны, существуют системообразующие факторы, которые не дают системе распасться. К тому же существует граница системы, выход за которую может быть губительным для элементов системы и для системы в целом. Кроме того, на каждую систему действуют другие системы, препятствующие расширению системных границ. Всё это определяет целостность как специфическое свойство зрелой системы.

    Приобретаемые системой новые функциональные качества включают в себя специфические свойства, приобретённые системой в процессе её общения с внешней средой. Наиболее перспективными оказываются те элементы системы, функции которых соответствуют потребностям существования системы в конкретной внешней среде. Система в целом становится специализированной. Она может успешно функционировать только в той среде, в которой она сформировалась. Всякий переход системы в другую среду неизбежно вызывает её преобразование.

    Система в период зрелости внутренне противоречива вследствие двойственности своего существования как системы, завершающей одну форму движения и являющейся носителем более высокой формы движения. Даже при благоприятных внешних условиях внутренние противоречия приводят систему в состояние преобразования - неизбежному этапу её развития.

    Внешние причины преобразования системы:

    1. изменения внешней среды;
    2. проникновение в систему чуждых элементов, воздействующих на структуру системы.

    Внутренние причины преобразования системы:

    1. ограниченность пространства развития и обострение противоречий между элементами системы;
    2. накопление ошибок при развитии системы (мутации в живых организмах);
    3. прекращение воспроизводства элементов, составляющих систему.

    Преобразование системы может привести как к гибели системы, так и к возникновению качественно иной системы, причём степень организованности новой системы может быть равной или более высокой, чем степень организованности преобразуемой системы.

    Таким образом, при определённых условиях возможен скачкообразный переход системы на новый более высокий (или более низкий) уровень упорядоченности. Причём переход системы к различным свойственным ей состояниям, а также разрушение системы могут быть результатом как достаточно сильных внешних воздействий, так и относительно слабых флюктуаций длительно существующих или усиливающихся за счёт положительных обратных связей. Переход системы на новый уровень организованности в определённых ситуациях представляет собой случайный процесс выбора системой одного из возможных путей эволюции. Здесь вновь следует подчеркнуть слово «возможных», то есть разумно говорить о создании условий перехода системы в одно из возможных, свойственных ей состояний.

    Возможны два крайних варианта изменения структуры системы, которые можно условно обозначить как революционный и эволюционный. При революционном преобразовании предполагается, что созданию новой организации системы, новой её структуры должна предшествовать насильственная ломка структуры старой. Обычно после такой насильственной ломки система переходит на более низкий уровень упорядоченности, при этом формирование новой структуры затягивается на длительный, порой неопределённый, срок. При эволюционном преобразовании новые отношения формируются в рамках существующей структуры, возникают новые тенденции развития системы. При накоплении количественных изменений возможен и скачкообразный, и в этом смысле революционный, переход системы в новое равновесное состояние - к новой структуре, к которой система «внутренне» готова. В этом случае суть революционного преобразования сводится к уничтожению элементов, препятствующих становлению новой структуры (например, в социально-экономических системах такими элементами являются органы управления).

    Если предположить, что состояние системы может быть представлено набором из n параметров, то каждому состоянию системы будет соответствовать точка в n -мерном пространстве состояний системы, а функционирование системы проявится в перемещении этой точки по некоторой траектории в пространстве состояний. По-видимому, достижение желаемого состояния возможно в общем случае по нескольким траекториям. Предпочтительность траектории определяется оценкой качества траектории и зависит также от ограничений, накладываемых на систему, в том числе внешней средой. Эти ограничения определяют область допустимых траекторий. Для определения предпочтительной траектории из числа допустимых вводится критерий качества функционирования системы - в общем случае [формально] в виде некоторых целевых функций (функционалов, отношений). На предпочтительной [оптимальной] траектории целевые функции достигают экстремальных значений. Целенаправленное вмешательство в поведение системы, обеспечивающее выбор системой оптимальной траектории развития, называется управлением (см. ).

  6. Движение системы . Процесс последовательного изменения состояния системы. Движение бывает как вынужденным, так и собственным. Вынужденное движение системы - это изменение её состояния под влиянием внешней среды. Так, примером вынужденного движения системы «организация» может служить перемещение ресурсов по приказу, поступившему в систему извне. Собственное движение системы - это изменение состояния системы без воздействия внешней среды (только под действием внутренних причин). Так, собственным движением системы «человек» будет его жизнь как биологического (а не общественного) индивида, то есть питание, сон, размножение и тому подобное.
  7. Ограничения системы. Набор факторов, определяющих условия функционирования системы (реализацию процесса). Ограничения бывают как внутренними, так и внешними. Одним из основных внешних ограничений является цель функционирования системы. Примером внутренних ограничений могут быть ресурсы, обеспечивающие реализацию того или иного процесса.
  8. Процессы системы. Совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся:
    1. входной процесс - множество входных воздействий, которые изменяются с течением времени;
    2. выходной процесс - множество выходных воздействий на внешнюю среду, которые изменяются с течением времени и определяются выходными величинами (реакциями);
    3. переходный процесс - множество преобразований начального состояния и входных воздействий системы в выходные величины, которые изменяются с течением времени по определённым правилам.
  9. Функции системы. Свойства системы, приводящие к достижению цели. Функционирование системы проявляется в её переходе из одного состояния в другое или в сохранении какого-либо состояния в течение определённого периода. В этом смысле поведение системы - это её функционирование во времени. Целенаправленное (целеустремлённое) поведение ориентировано на достижение системой предпочтительной для неё цели. В системе, состоящей из связанных между собой, взаимодействующих подсистем, оптимум для всей системы не является функцией (например, суммой) оптимумов подсистем, входящих в систему. Это положение иногда называют теоремой оптимумов системного подхода .

Развитие системных представлений

Природная системность человеческого мышления, деятельности и связанных с ними практик является одним из объективных факторов возникновения и развития системных понятий и теорий. Естественный рост системности человеческой деятельности сопровождается её усовершенствованием на протяжении всей истории развития человека. В современном обществе системные представления уже достигли такого уровня, что мысли о полезности системного подхода применительно к любой деятельности являются привычными и общепринятыми.

Претерпев длительную историческую эволюцию, понятие «система» в XX веке становится одним из ключевых философско-методологических, общенаучных и специально-научных понятий. В современном научном (см. ) и техническом (см. ) знании разработка проблематики, связанной с исследованием и конструированием систем разного рода, проводится в рамках системного подхода (см. ), общей теории систем (см. ), различных специальных теорий систем , системном анализе , в кибернетике , системной инженерии (см. ), синергетике (см. ) и многих других областях.

Первые представления о системе возникли в античной философии, выдвинувшей онтологическое истолкование системы как упорядоченности и целостности бытия (см. ), а также идею системности знания (целостность знания, аксиоматическое построение логики, геометрии). В античной философии и науке понятие системы включается в контекст философских поисков общих принципов организации мышления и знания. Для понимания генезиса понятия системы принципиален момент включения мифологических представлений о Космосе, Мировом порядке, Едином и тому подобных категорий в контекст собственно философско-методологических рассуждений. Например, сформулированный в Античности тезис о том, что целое больше суммы его частей, имел уже не только мистический смысл, но и фиксировал проблему организации мышления. Пифагорейцы и элеаты решали проблему не только объяснения и понимания мира, но и онтологического обоснования используемых ими рациональных процедур. Число и Бытие - начала, не столько объясняющие и описывающие мир, сколько выражающие точку зрения становящегося рационального мышления и требование мыслить единство многого. Платон выражает это требование уже в явном виде: «Существующее единое есть одновременно и единое и многое, и целое и части…» Только единство многого, то есть система, может быть, согласно Платону, предметом познания. Отождествление стоиками системы с Мировым порядком можно осмыслить только с учётом всех этих факторов.

Воспринятые от Античности представления о системности бытия развивались как в системно-онтологических концепциях Б. Спинозы и Г. В. Лейбница, так и в построениях научной систематики XVII–XVIII веков, стремившейся к естественной (а не телеологической) интерпретации системности мира (например, классификация К. Линнея). В философии и науке Нового времени понятие системы использовалось при исследовании научного знания; при этом спектр предлагаемых решений был очень широк - от отрицания системного характера научно-теоретического знания (Э. Б. де Кондильяк) до первых попыток философского обоснования логико-дедуктивной природы систем знания (И. Г. Ламберт и другие).

Принципы системной природы знания разрабатывались в немецкой классической философии: согласно И. Канту, научное знание есть система, в которой целое главенствует над частями; Ф. Шеллинг и Г. В. Ф. Гегель трактовали системность познания как наиболее важное требование теоретического мышления. В западной философии второй половины XIX - начала XX века содержатся постановки, а в отдельных случаях и решения некоторых проблем системного исследования: специфики теоретического знания как системы (неокантиантво), особенностей целого (холизм, гештальт-психология), методы построения логических и формализованных систем (неопозитивизм). Определённый вклад в разработку философских и методологических оснований исследования систем внесла марксистская философия, основанная на принципах материалистической диалектики (всеобщей связи явлений, развития, противоречия и других).

Для начавшегося со второй половины XIX века проникновения понятия системы в различные области конкретно-научного знания важное значение имело создание эволюционной теории Ч. Дарвина, теории относительности, квантовой физики, позднее - структурной лингвистики. Возникла задача построения строгого определения понятия системы и разработки оперативных методов анализа систем. Приоритет в этом отношении принадлежит разработанной А. А. Богдановым в начале XX века концепции всеобщей организационной науки - тектологии . Эта теория в своё время не получила достойного признания и только во второй половине XX века значение тектологии Богданова было адекватно оценено.

Ряд конкретно-научных концепций систем и принципов их анализа был сформулирован в 1930–1940-х годах в работах В. И. Вернадского, Т. Котарбиньского, Л. фон Берталанфи. Предложенная в конце 1940-х годов Берталанфи программа построения общей теории систем явилась одной из попыток обобщённого анализа системной проблематики. Именно эта программа системных исследований получила наибольшую известность в мировом научном сообществе второй половины XX века и с её развитием и модификацией во многом связано возникшее в это время системное движение в науке и технических дисциплинах. Дополнительно к этой программе в 1950–1960-х годах был выдвинут ряд общесистемных концепций и определений понятия системы - в рамках кибернетики, системного подхода, системного анализа, системотехники, теории необратимых процессов и других направлений исследований.

Повсеместное распространение идей системных исследований и системного подхода является одной из характерных особенностей научного и технического знания XX века. Развитие инженерного подхода и технологий в XX веке открывает эру искусственно-технического освоения систем. Теперь системы не только исследуются, но проектируются и конструируются. Одновременно оформляется и организационно-управленческая установка: объекты управления также начинают рассматриваться как системы. Это приводит к выделению всё новых и новых классов систем: целенаправленных, самоорганизующихся, рефлексивных и других. Сам термин «система» входит в лексикон практически всех профессиональных сфер. Начиная с середины XX века широко разворачиваются исследования по общей теории систем и разработки в области системного подхода, складывается межпрофессиональное и междисциплинарное системное движение.

В настоящее время основная задача специализированных теорий систем заключается в построении конкретно-научного знания о разных типах и разных аспектах систем, в то время как главные проблемы общей теории систем концентрируются вокруг логико-методологических принципов анализа систем, построения метатеории системных исследований. В рамках этой проблематики особое значение имеет установление методологических условий и ограничений применения системных методов. К числу таких ограничений относятся, в частности, так называемые системные парадоксы, например парадокс иерархичности (решение задачи описания любой данной системы возможно лишь при условии решения задачи описания данной системы как элемента более широкой системы, а решение последней задачи возможно лишь при условии решения задачи описания данной системы как системы). Выход из этого и аналогичных парадоксов состоит в использовании метода последовательных приближений, позволяющего путём оперирования неполными и заведомо ограниченными представлениями о системе постепенно добиваться более адекватного знания об исследуемой системе. Анализ методологических условий применения системных методов показывает как принципиальную относительность любого, имеющегося в данный момент времени описания той или иной системы, так и необходимость использования при анализе любой системы всего арсенала содержательных и формальных средств системного исследования.

Вместе с тем, несмотря на широкое распространение системных исследований, категориальный и онтологический статус «системы как таковой» остаётся во многом неопределённым. Это вызвано, с одной стороны, принципиальными различиями в профессиональных установках сторонников системного подхода, с другой стороны, попытками распространить это понятие на чрезвычайно широкий круг явлений, и наконец, процедурной ограниченностью традиционного понятия системы.

Во всём многообразии трактовок систем продолжают сохраняться два подхода. С точки зрения первого из них (его можно назвать онтологическим или, более жёстко, натуралистическим), системность интерпретируется как фундаментальное свойство объектов познания. Тогда задачей системного исследования становится изучение специфически системных свойств объекта: выделение в нём элементов, связей и структур, зависимостей между связями и тому подобных категорий. Причём элементы, связи, структуры и зависимости трактуются как «натуральные», присущие «природе» самих объектов и в этом смысле объективные. Система в таком подходе полагается как объект, обладающий собственными законами жизни. Другой подход (его можно назвать эпистемолого-методологическим) заключается в том, что система рассматривается как эпистемологический конструкт, не имеющий естественной природы, и задающий специфический способ организации знаний и мышления. Тогда системность определяется не свойствами самих объектов, но целенаправленностью деятельности и организацией мышления. Различие в целях, средствах и методах деятельности неизбежно производит множественность описаний одного и того же объекта, что порождает в свою очередь установку на их синтез и конфигурирование.

Классификация систем

Существенным аспектом раскрытия содержания трактовок систем является выделение различных типов систем, при этом разные типы и аспекты систем - законы их строения, поведения, функционирования, развития и так далее - описываются в соответствующих специализированных теориях систем. Для выделения классов систем могут использоваться различные классификационные признаки. Основными из них считаются: природа элементов системы, происхождение, длительность существования, изменчивость свойств, степень сложности, отношение к среде, реакция на возмущающие воздействия, характер поведения и степень участия людей в реализации управляющих воздействий. К настоящему времени сформировался ряд классификаций систем, использующих указанные основания.

В наиболее общем плане системы можно разделить по природе их элементов на материальные (реальные) и идеальные (абстрактные). Деление систем на материальные и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определёнными отображениями (моделями) реальных объектов или чистыми абстракциями.

Материальные системы представляют собой целостные совокупности объектов различных областей действительности и, в свою очередь, делятся на системы, состоящие из элементов неорганичной природы (физические, геологические, химические и другие) и живые системы, куда входят как простейшие биологические системы, так и очень сложные биологические объекты типа организма, вида, экосистемы. Материальные системы бывают относительно простыми и относительно сложными. Более простые системы состоят из относительно однородных непосредственно взаимодействующих элементов. В более сложных системах элементы группируются в подсистемы, вступающие во взаимоотношения как некоторые целостности. Особый класс материальных живых систем образуют социальные системы, многообразные по типам и формам (от простейших социальных объединений до социально-экономической структуры общества).

Идеальные (абстрактные) системы представляют собой продукты человеческого мышления, элементы которых не имеют прямых аналогов в реальном мире и представляют собой идеальные объекты - понятия или идеи, связанные определёнными взаимоотношениями. Они создаются путём мысленного отвлечения от тех или иных сторон, свойств и/или связей предметов и образуются в результате творческой деятельности человека. Они также могут быть разделены на множество различных типов (особые системы представляют собой научные понятия, гипотезы, теории, системы уравнений и тому подобные). Абстрактной системой является, например, система понятий той или иной науки. К числу абстрактных систем относятся и научные знания о системах разного типа, как они формулируются в общей теории систем, специальных теориях систем и других областях. В современной науке большое внимание уделяется исследованию языка как [семиотической] системы; в результате обобщения этих исследований возникла общая теория знаков - семиотика (см. ).

Задачи обоснования математики и логики (см. ) вызвали интенсивную разработку принципов построения формализованных логических систем . Результаты этих исследований широко применяются во всех областях науки и техники. В целом, формализованные логические системы подразделяются на три основных класса:

  1. статические математические системы или модели, которые описывают объект в какой-либо момент времени;
  2. динамические математические системы или модели отражают поведение объекта во времени;
  3. находящиеся в неустойчивом положении между статикой и динамикой, которые при одних воздействиях ведут себя как статические, а при других воздействиях - как динамические.

В зависимости от происхождения систем, выделяют естественные и искусственные системы. Естественные системы, будучи продуктом развития природы, возникли без вмешательства человека. Искусственные системы представляют собой результат созидательной деятельности человека, причём со временем их количество постоянно увеличивается.

По длительности существования системы подразделяются на постоянные и временные . К постоянным обычно относятся естественные системы, хотя с точки зрения диалектики все существующие системы - временные. К постоянным принято относить и искусственные системы, которые в процессе заданного времени функционирования сохраняют существенные свойства, определяемые предназначением этих систем.

В зависимости от степени изменчивости свойств систем, выделяются статичные и динамичные системы. Для статичной системы характерно, что её состояние с течением времени остаётся постоянным (например, газ в ограниченном объёме - в состоянии равновесия). Динамичная система изменяет своё состояние во времени (например, живой организм). Если знание значений переменных системы в данный момент времени позволяет установить состояние системы в любой последующий или любой предшествующий моменты времени, то такая система является однозначно детерминированной. Для вероятностной (стохастической) системы знание значений переменных в данный момент времени позволяет предсказать вероятность распределения значений этих переменных в последующие моменты времени. Поведение указанных классов систем описывается с помощью дифференциальных уравнений, задача построения которых решается в математической теории систем.

По характеру взаимоотношений систем с внешней средой, выделяют закрытые и открытые системы.

Закрытые (изолированные) системы физически изолированы от внешней среды. Все статические системы являются закрытыми, что, однако, не исключает присутствия динамических процессов в закрытых системах. В соответствии со вторым законом термодинамики, способность изолированных физических систем поддерживать постоянный обмен веществ и энергии со временем ослабевает, в результате чего система расходует запас энергии, вследствие чего энтропия такой системы стремится к своему максимуму. В таких системах нивелируются различия, а процессы самоорганизации в них невозможны. Второе начало термодинамики предсказывает довольно пессимистический прогноз однородного будущего изолированных систем. Изолированных и закрытых систем в природе фактически не существует. Если проанализировать пример любой из таких систем, то можно убедиться, что не существует абсолютных «изолирующих экранов» сразу от всех форм материи или энергии, что любая система быстрее или медленнее развивается или деградирует. В вечности понятия «быстро» и «медленно» смысла не имеют, поэтому, строго говоря, существуют только открытые системы, близкие к равновесию, условно названные открытыми равновесными системами. С этой точки зрения изолированные и закрытые системы - заведомо упрощённые схемы открытых систем, полезные при приближённом решении частных задач.

Открытые системы характеризуются постоянным обменом вещества и энергии с внешней средой. Так, в биологических организмах доминирует подвижное равновесие при постоянном обмене вещества и энергии со средой. Такие открытые системы избегают энтропии через метаболизм и постоянное поступление информации из внешней среды. Все открытые системы характеризуются самостабилизацией и саморегуляцией. Эти системы оказываются способными на поддержание наличного состояния в результате включения процессов контроля. Негативные обратные сигналы противодействуют поступающей информации из среды, элиминируют возмущения и, таким образом, реставрируют желаемое состояние системы. В открытых органических системах способность на динамическую самостабилизацию желаемого состояния называется гомеостазом. Такие системы характеризует плавное равновесие, поскольку абсорбирование возмущений среды приводит не к первоначальному состоянию, а к новому равновесному состоянию. Самоорганизация и морфогенез представляют наиболее общие процессы системных изменений в эволюции открытых систем. В то время как самостабилизация достигается посредством негативных обратных связей, самоорганизация достигается посредством позитивных обратных связей. Развитие системы (морфогенез) предполагает адаптацию первоначального равновесного состояния внешним возмущениям и, соответственно, достижение нового этапа развития. Возмущения среды вызывают усиление механизмов самостабилизации.

Новая трактовка второго начала термодинамики была предложена . По мысли Пригожина, энтропия - это не просто безостановочное соскальзывание системы к состоянию, лишённому какой бы то ни было организации. Необратимые процессы являются источником порядка. В сильно неравновесных условиях может совершаться переход от беспорядка, хаоса к порядку. Могут возникать новые динамические состояния материи, отражающие взаимодействие данной системы с окружающей средой. Эти новые структуры Пригожин называет диссипативными, поскольку их стабильность покоится на диссипации энергии и вещества. Теории неравновесной динамики и синергетики задают новую парадигму эволюции систем, преодолевающую термодинамический принцип прогрессивного соскальзывания к энтропии. С точки зрения этой новой парадигмы, порядок, равновесие и устойчивость систем достигаются постоянными динамическими неравновесными процессами.

В зависимости от реакции на возмущающие воздействия выделяют активные и пассивные системы. Активные системы способны противостоять воздействиям внешней среды и других систем и сами могут воздействовать на них. У пассивных систем это свойство отсутствует.

По характеру поведения все системы подразделяются на системы с управлением и без управления . Класс систем с управлением образуют системы, в которых реализуется процесс целеполагания и целеосуществления. Примером систем без управления может служить Солнечная система, в которой траектории движения планет определяются действующими во Вселенной законами гравитации.

В прикладных науках, а также в теории и практике управления широко используются классификации систем в зависимости от степени их сложности и организованности. По этим основаниям системы делятся на большие , простые , сложные и организационные . Как правило, когда речь идёт о различных видах систем управления, прежде всего подразумевается именно такое общее их деление.

К организационным системам относятся социальные системы - группы, коллективы, сообщества людей, общество в целом (см. ).

Простыми системами называют системы, состоящие из ограниченного и относительного малого числа элементов с однотипными одноуровневыми связями. Такие системы с достаточной степенью точности могут быть описаны известными математическими соотношениями.

Большими системами называют многокомпонентные системы, включающие значительное число элементов с однотипными многоуровневыми связями. Большие системы - это пространственно-распределённые системы высокой степени сложности, в которых подсистемы (их составные части) также относятся к категориям сложных. Дополнительными признаками, характеризующими большую систему, являются:

  • большие размеры;
  • сложная иерархическая структура;
  • циркуляция в системе больших информационных, энергетических и материальных потоков;
  • высокий уровень неопределённости в описании системы.

Сложными системами называют структурно и функционально сложные многокомпонентные системы с большим числом взаимосвязанных и взаимодействующих элементов различного типа и с многочисленными и разнородными связями между ними. Сложные системы отличаются многомерностью, разнородностью структуры, многообразием природы элементов и связей, организационной разносопротивляемостью и разночувствительностью к воздействиям, асимметричностью потенциальных возможностей осуществления функциональных и дисфункциональных изменений. При этом каждый из элементов подобной системы может быть также представлен в виде системы (подсистемы). К сложной можно отнести систему, обладающую по крайней мере одним из следующих признаков:

  • система в целом обладает свойствами, которыми не обладает ни один из составляющих её элементов;
  • систему можно разделить на подсистемы и изучать каждую из них отдельно;
  • система функционирует в условиях существенной неопределённости и воздействия среды на неё, что обусловливает случайный характер изменения её показателей;
  • система осуществляет целенаправленный выбор своего поведения.

В кибернетике мера сложности связывается с понятием разнообразия. В частности, из принципа разнообразия следует, что анализ систем (процессов, ситуаций), обладающих определённым разнообразием, возможен лишь с использованием управляющих систем, способных порождать, по крайней мере, не меньшее разнообразие.

Важной особенностью сложных систем, особенно живых, технических и социальных, является передача в них информации , что обусловливает существенные взаимосвязи их свойств. Поэтому значительную роль в функционировании таких систем играют процессы управления. К наиболее сложным видам подобных систем относятся целенаправленные системы, поведение которых подчинено достижению определённых целей, и самоорганизующиеся системы, способные в процессе функционирования видоизменять свою структуру. При этом для многих сложных систем характерно наличие разных по уровню, часто не согласующихся между собой целей.

Системы, содержащие активные элементы (подсистемы), то есть такие элементы, которые имеют возможность самостоятельно принимать решения относительно своего состояния, называются организационными системами (организациями). В организационных системах свойством целеустремлённости обладает как вся система, так и отдельные её элементы. Этим организация отличается от системы, называемой организмом. Между отдельными элементами (органами) организма существует разделение системных функций, но только организм в целом может быть целеустремлённым.

Лекция 2: Системные свойства. Классификация систем

Свойства систем.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Рис. — Классификация систем

Основание (критерий) классификации Классы систем
По взаимодействию с внешней средой Открытые
Закрытые
Комбинированные
По структуре Простые
Сложные
Большие
По характеру функций Специализированные
Многофункциональные (универсальные)
По характеру развития Стабильные
Развивающиеся
По степени организованности Хорошо организованные
Плохо организованные (диффузные)
По сложности поведения Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся
По характеру связи между элементами Детерминированные
Стохастические
По характеру структуры управления Централизованные
Децентрализованные
По назначению Производящие
Управляющие
Обслуживающие

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

  1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
  3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

Сложные системы можно подразделить на следующие факторные подсистемы:

  1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  3. управляющую для реализации глобальных решений;
  4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

По характеру развития 2 класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

1. Целостность и делимость . Система — это прежде всего целостная совокупность элементов. Это означает, что, с одной стороны, система - целостное образование и, с другой — в ее составе отчетливо могут быть выделены целостные объекты (элементы). При этом следует иметь в виду, что элементы существуют лишь в системе. Вне системы это в лучшем случае объекты, обладающие системнозначимыми свойствами. При вхождении и систему элемент приобретает системноопределенное свойство взамен системнозначимого. Для системы первичным является признак целостности, т. е. она рассматривается как единое целое, состоящее из взаимодействующих частей, часто разнокачественных, но одновременно совместимых.

2. Наличие устойчивых связей . Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами, не входящими в данную систему, является следующим атрибутом системы. Система существует как некоторое целостное образование, когда мощность (сила) существенных связей между элементами системы на интервале времени, не равном нулю, больше, чем мощность связей этих же элементов с внешней средой. Для информационных связей оценкой потенциальной мощности может служить пропускная способность данной информационной системы, а реальной мощности - действительная величина потока информации. Однако в общем случае при оценке мощности информационных связей необходимо учитывать качественные характеристики передаваемой информации (ценность, полезность, достоверность и т. п.).

3. Организация . Это свойство характеризуется наличием определенной организации, что проявляется в снижении энтропии (степени неопределенности) системы H (S) по сравнению с энтропией системоформирующих факторов H (F), определяющих возможность создания системы.

4. Эмерджентность . Эмерджентность предполагает наличие таких качеств (свойств), которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности.

Наличие интегрированных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью.

Отсюда можно сделать выводы:

1) система не сводится к простой совокупности элементов;

2) расчленяя систему на отдельные части, изучая каждую из них отдельности, нельзя познать все свойства системы в целом.

Любой объект, который обладает всеми рассматриваемыми свойствами можно называть системой. Одни и те же элементы (в зависимости от принципа, используемого для их объединения в систему) могут образовывать различные по свойствам системы. Поэтому характеристики системы в целом определяются не только и не столько характеристиками составляющих ее элементов, сколько характеристиками связей между ними. Наличие взаимосвязей (взаимодействия) между элементами определяет особое свойство сложных систем — организованную сложность. Добавление элементов в систему не только вводит новые связи, но и изменяет характеристики многих или всех прежних взаимосвязей, приводит к исключению некоторых из них или появлению новых.

Любая система обладает рядом основных признаков.

Во-первых, она представляет собой набор элементов (отдельных частей), выделенных по тому или иному принципу и играющих роль подсистем. Последние относительно самостоятельны, но различным образом взаимодействуют в рамках системы (находятся рядом и граничат друг с другом; порождают друг друга; оказывают друг на друга влияние). Для сохранения целостности системы любое взаимодействие должно быть гармоничным.

Во-вторых, каждая система имеет структуру, то есть определенное строение, взаимное расположение элементов (в рамках одного и того же состава элементов возможны те или иные модификации структуры). Структурой называется также совокупность связей между элементами системы. Она может в той или иной степени зависеть не только от их расположения, но и от особенностей (например, взаимоотношения в чисто женском, мужском и смешанном коллективах, занятых одним и тем же делом, будут различны). Иногда в обиходе понятие структура используется как синоним понятия организация. Структура является основой системы, придает ей целостность и внутреннюю организованность, в рамках которой взаимодействие элементов подчиняется определенным законам. Системы, где организованность минимальна, называются неупорядоченными, например, толпа на улице.

В-третьих, система имеет границы, отделяющие ее от окружающей среды. Эти границы могут быть прозрачными, допускающими проникновение внешних влияний, и непрозрачными, наглухо отделяющими ее от остального мира. Системы, осуществляющие свободный двусторонний обмен энергией, веществом, информацией со средой, получили название открытых; в противном случае говорится о закрытых системах, функционирующих относительно независимо от среды. Если в систему вообще не поступают ресурсы извне, ее жизнь имеет тенденцию к затуханию и прекращению (например, часы, если их не завести, останавливаются). Открытые системы, самостоятельно черпающие необходимые для своего функционирования ресурсы из внешней среды и преобразующие их соответствующим образом, в принципе, неиссякаемы. Недостаточно или, наоборот, чрезмерно активный обмен со средой может систему разрушить (по причине нехватки ресурсов или неспособности их ассимилировать ввиду избыточного количества и разнообразия). Поэтому система должна находиться в состоянии внутреннего и внешнего равновесия, что обеспечивает оптимальное приспособление к окружению и успешное развитие.

Основные признаки системы:

  • · целостность, связность или относительная независимость от среды и систем (наиболее существенная количественная характеристика системы). С исчезновением связности исчезает и система, хотя элементы системы и даже некоторые отношения между ними могут быть сохранены;
  • · наличие подсистем и связей между ними или наличие структуры системы (наиболее существенная качественная характеристика системы). С исчезновением подсистем или связей между ними может исчезнуть и сама система;
  • · возможность обособления или абстрагирования от окружающей среды, т.е. относительная обособленность от тех факторов среды, которые в достаточной мере не влияют на достижение цели;
  • · связи с окружающей средой по обмену ресурсами;
  • · подчиненность всей организации системы некоторой цели (как это, впрочем, следует из определения системы);
  • · эмерджентность или несводимость свойств системы к свойствам элементов.


Что еще почитать