Первое начало термодинамики в общем виде. Применение первого начала термодинамики

История возникновения «первого начала термодинамики»

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца. Согласно первому началу термодинамики, термодинамическая система может совершать работу только за счёт своей внутренней энергии или каких-либо внешних источников энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Понятие «первого начала термодинамики»

Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и на совершение работы над внешними телами:

Если оба способа задействованы одновременно, то можно записать

ДU=Q?A или Q=ДU+A.

Эта формула выражает первое начало термодинамики.

Количество теплоты, сообщенное термодинамической системе, расходуется на изменение ее внутренней энергии и на совершение работы системой против внешних сил.

Если вместо работы A системы над внешними телами ввести работу внешних сил A " (А = -A "), то первое начало термодинамики можно переписать так:

Изменение внутренней энергии термодинамической системы равно сумме работы, произведенной над системой внешними силами, и количеству теплоты, переданному системе в процессе теплообмена.

Первое начало термодинамики является обобщением закона сохранения энергии для механических и тепловых процессов. Например, рассмотрим процесс торможения бруска на горизонтальной поверхности под действием силы трения. Скорость бруска уменьшается, механическая энергия «исчезает». Но при этом трущиеся поверхности (брусок и горизонтальная поверхность) нагреваются, т.е. механическая энергия превращается во внутреннюю.

При протекании термодинамического процесса тела обмениваются энергией. Передача энергии от одного тела к другому происходит двумя способами.

1-й способ реализуется при непосредственном контакте тел, имеющих различную температуру, путем обмена кинетической энергией между молекулами соприкасающихся тел, либо лучистым переносом внутренней энергии излучающих тел путем электромагнитных волн. При этом энергия передается от более нагретого тела к менее нагретому.

Количество энергии, переданной первым способом от одного тела к другому, называется количеством теплоты - Q, а способ - передача энергии в форме теплоты.

2-й способ связан с наличием силовых полей или внешнего давления. Для передачи энергии этим способом тело должно либо передвигаться в силовом поле, либо изменять свой объем под действием внешнего давления, То есть передача энергии происходит при условии перемещения всего тела или его части в пространстве. При этом количество переданной энергии называется работой - L, а способ- передача энергии в форме работы.

Количество энергии, полученной телом в форме работы, называется работой, совершенной над телом, а отданную энергию - затраченной телом работой. энергия работа термодинамика энтропия карно.

Количество теплоты, полученное (отданное) телом и работа, совершенная (затраченная) над телом, зависят от условий перехода тела из начального состояния в конечное, т.е. зависят от характера термодинамического процесса. В общем случае внутренней энергией называется совокупность всех видов энергий, заключенной в теле (или системе тел). Эту энергию можно представить как сумму отдельных видов энергий: кинетической энергии молекул (поступательного и вращательного движения молекул); колебательного движения атомов в самой молекуле; энергии электронов; внутриядерной энергии; энергии взаимодействия между ядром молекулы и электронами; потенциальной энергии молекул.

В технической термодинамике рассматриваются только такие процессы, в которых изменяются кинетическая и потенциальная составляющие внутренней энергии. При этом знание абсолютных значений внутренней энергии не требуется. Поэтому внутренней энергией для идеальных газов называют кинетическую энергию движения молекул и энергию колебательных движений атомов в молекуле, а для реальных газов дополнительно включают потенциальную энергию молекул.

Внутренняя энергия (U) является функцией двух основных параметров состояния газа, т.е. U = f (P,T), U = f (v,T), U= f (P,v). Так как каждому состоянию рабочего тела (системы) соответствует вполне определенное значение параметров состояния, то для каждого состояния рабочего тела (например, газа) будет характерна своя однозначная, вполне определенная величина внутренней энергии U. То есть U является функцией состояния газа. И разность внутренних энергий для двух каких-либо состояний рабочего тела или системы тел не будет зависеть от пути перехода от первого состояния во второе. Первый закон термодинамики является основой термодинамической теории и имеет огромное прикладное значение при исследовании термодинамических процессов. Этот закон является законом сохранения и превращения энергии:

"энергия не исчезает и не возникает вновь, она лишь переходит из одного вида в другой в различных физических процессах".

Для термодинамических процессов закон устанавливает взаимосвязь между теплотой, работой и изменением внутренней энергии термодинамической системы:

"теплота, подведенная к системе, расходуется на изменение энергии системы и совершение работы". Уравнение первого закона термодинамики имеет следующий вид:

Q = (U2 - U1) + L, (1)

теплота термодинамика энергия начало

где Q - количество теплоты, подведенной (отведенной) к системе; L - работа, совершенная системой (над системой); (U2 - U1) - изменение внутренней энергии в данном процессе. Если подводится бесконечно малое количество теплоты, то

Это запись первого начала в дифференциальной форме, в то время как формулу (1) называют записью первого начала в интегральной форме. В таком виде первое начало используется при анализе так называемых равновесных процессов, когда давление внутри термодинамической системы и во внешней среде одинаковы. Единственным видом работы в таком процессе является работа расширения

д L = P·dV. (3)

Она имеет ещё несколько названий: механическая работа, работа изменения объёма. Примечание: в формуле (3) используются два обозначения дифференциала: а) d и д. Первый считается полным, второй неполным. Первый используется только для обозначения бесконечно малых изменений функций состояния. К ним относятся внутренняя энергия, энтальпия, энтропия. Их значения определяются только состоянием системы, и не зависят от того, какие термодинамические процессы происходили при переходе системы из начального равновесного состояние в конечное, т.е U = U2 - U1= ?U. Неполный дифференциал используется для обозначения бесконечно малых значений величин (работы, теплоты), которые зависят от процесса перехода системы из одного состояния в другое. Например?д L = ·dV; L= ·dV. Работу можно найти, если известна зависимость Р от V. А для этого надо знать, какой термодинамический процесс при этом совершила система. Если:

Q > 0 - теплота подводится к системе; Q < 0 - теплота отводится от системы;

L > 0 -работа совершается системой; L < 0 - работа совершается над системой.

Для единицы массы вещества уравнение первого закона термодинамики имеет вид:

q = Q /m = (u2- u1) + l (4)

Здесь l = L/m, удельное значение работы и u=U/m удельное значение внутренней энергии. Первый закон (начало) термодинамики указывает, что тепло Q, полученное термодинамической системой извне, идёт на увеличение его внутренней энергии и на совершение работы против сил внешнего давления (механической работ, работы изменения объёма). Двигатель, постоянно производящий работу и не потребляющий никакой энергии, называется «вечным двигателем I-го рода».

Из этого можно высказать следующее определение первого закона термодинамики:

"вечный двигатель первого рода невозможен".

Для систем, в к-рых существ, значение имеют тепловые процессы (поглощение или выделение тепла). Согласно первому началу , термодинамич. система (напр., в тепловой машине) может совершать работу только за счет своей внутр. энергии или к.-л. внеш. источника энергии. Первое начало часто формулируют как невозможность существования вечного двигателя первого рода, к-рый совершал бы работу, не черпая энергию из нек-рого источника.

П ервое начало вводит представление о системы как ф-ции состояния. При сообщении системе нек-рого кол-ва теплоты Q происходит изменение внутр. энергии системы DU и система совершает работу А:

DU = Q + А.

П ервое начало утверждает, что каждое состояние системы характеризуется определенным значением внутр. энергии U, независимо от того, каким путем приведена система в данное состояние. В отличие от значений U значения A и Q зависят от процесса, приведшего к изменению состояния системы. Если начальное и конечное состояния a и b бесконечно близки (переходы между такими состояниями наз. инфи-нитезимальными процессами), первое начало записывается в виде:

Это означает, что бесконечно малое изменение внутр. энергии dU является полным дифференциалом ф-ции состояния, т.е. интеграл = U b - U a , тогда как бесконечно малые кол-ва теплоты и работы не являются дифференц. величинами, т.е. интегралы от этих бесконечно малых величин зависят от выбранного пути перехода между состояниями а и b (иногда их наз. неполными дифференциалами).

Из общего кол-ва работы, производимой системой объема У, можно выделить работу обратимого изотермич. расширения под действием внеш. p e , равную p e V, и все остальные виды работы, каждый из к-рых можно представить произведением нек-рой обобщенной силы , действующей на систему со стороны , на обобщенную координату x i , изменяющуюся под воздействием соответствующей обобщенной силы. Для инфинитези-мального процесса


П ервое начало позволяет рассчитать макс. работу, получаемую при изотермич. расширении , изотермич. при пост. , устанавливать законы адиабатич. расширения и др. Первое начало является основой , рассматривающей системы, в к-рых теплота поглощается или выделяется в результате хим. р-ций, фазовых превращ. или (разбавления р-ров).

Если система обменивается со средой не только энергией, но и в-вом (см. ), изменение внутр. энергии системы при переходе из начального состояния в конечное включает помимо работы А и теплоты Q еще и т. наз. энергию массы Z. Бесконечно малое кол-во энергии массы в инфинитезимальном процессе определяется хим. потенциалами m k каждого из : = , где dN k - бесконечно малое изменение числа k-гo компонента в результате обмена со средой.

В случае квазистатич. процесса, при к-ром система в каждый момент времени находится в с , первое начало в общем виде имеет след. мат. выражение:


где p и m k равны соответствующим значениям для

Такие физические процессы, как теплота и работа, можно объяснить простой передачи энергии от одного тела к другому. В случае с работой речь идет о механической энергии, теплота же предполагает энергию термическую. Передача энергии ведется по законам термодинамики. Главные положения этого раздела физики известны как «начала».

Первое начало термодинамики регулирует и ограничивает процесс передачи энергии в той или иной системе.

Виды энергетических систем

В физическом мире существует два типа энергетических систем. Замкнутая, или закрытая система имеет постоянную массу. В открытой, или незамкнутой системе масса может уменьшаться и увеличиваться в зависимости от процессов, протекающих в этой системе. Большинство наблюдаемых систем являются незамкнутыми.

Исследования в таких системах затруднено множеством случайных факторов, влияющих на достоверность результатов. Поэтому физики изучают явления в замкнутых системах, экстраполируя результаты на открытые, с учетом необходимых поправок.

Энергия изолированной системы

Любая замкнутая система, в которой отсутствует обмен энергией с окружающей средой, является изолированной. Равновесное состояние такой системы определяется показаниями таких величин:

  • P- давление в системе;
  • V - объем изолированной системы
  • T- температура;
  • n - число молей газа в системе;

как видно, количество тепла и выполненная работа не входят в этот перечень. Закрытая изолированная система не совершает теплообмен и не производит работу. Ее полная энергия остается неизменной.

Изменение энергии системы

При совершении работы или возникновении процесса теплообмена состояние системы изменяется, и изолированной она уже считаться не будет.

Формулировка первого начала термодинамики

Прежде всего первое начало термодинамики было выведено для изолированных систем. Позднее было доказано, что закон универсален, и его можно применять к незамкнутым системам, если правильно учитывать изменение внутренней энергии, происходящее из-за колебания количества вещества в системе. Если рассматриваемая система переходит из состояния А в состояние Б, то работа, совершенная системой W , и количество теплоты Q будут различаться. Различные процессы дают неодинаковые показания этих переменных даже в случае, если в конечном итоге система придет в первоначальное состояние. Но при этом разница W - Q будет всегда одна и та же. Иными словами, если после какого-либо воздействия система пришла в первоначальное состояние, то независимо от типа процессов, учувствовавших в преобразовании такой системы, соблюдается правило W - Q = const .

В некоторых случаях удобнее использовать дифференциальную формулу выражения первого закона. Он выглядит так:dU=dW-dQ

здесь dU - бесконечно малое изменение внутренней энергии

dW - величина, характеризующая бесконечно малую работу системы

dQ - бесконечно малое количество теплоты, переданное данной системе.

Энтальпия

Для более широкого применения первого закона термодинамики вводится понятие энтальпии.

Так называется общее количество полной энергии вещества и произведения объема и давления. Физическое выражение энтальпии можно представить такой формулой:

Абсолютное значение энтальпии представляет собой сумму энтальпий всех частей, из которых состоит система.


В количественном выражении эта величина не может быть определена. Физики оперируют лишь разностью энтальпий конечного и начального состояния системы. Ведь при любых расчетах изменения состояния системы выбирают определенный уровень, при котором потенциальная энергия равна нулю. Точно также поступают и при расчете энтальпии. Если применить понятие энтальпии, то первое начало термодинамики для изопроцессов будет выглядеть таким образом:dU=dW-dH

Энтальпия любой системы зависит от внутреннего строения веществ, которые составляют эту систему. Эти показатели, в свою очередь, зависят от строения вещества, его температуры, количества и давления. Для сложных веществ можно вычислить стандартную энтальпию образования, которая равна тому количеству теплоты, которое понадобится для образования моля вещества из простых составляющих. Как правило, величина стандартной энтальпии отрицательная, так как при синтезе сложных веществ в большинстве случаев выделяется теплота.

Первый закон термодинамики в адиабатических процессах

Применение первого начала термодинамики для изопроцессов можно рассмотреть графически. К примеру, рассмотрим адиабатический процесс, в котором количество теплоты в течение всего времени остается неизменным, то есть Q = const . Такой изопроцесс протекает в теплоизолированных системах, или за столь короткое время, что система не успевает совершить теплообмен с внешней средой. Медленное расширение газа на диаграмме "объем-давление" описывается такой кривой:

По графику можно обосновать применение первого начала термодинамики к изопроцессам. Поскольку изменения количества теплоты в адиабатическом процессе не происходит, изменение внутренней энергии равно количеству произведенной работы. dU = - dW

Отсюда следует, что внутренняя энергия системы убывает, и температура ее падает.

Примеры адиабатических процессов

Верно и обратное утверждение: понижение давления при отсутствии теплообмена резко повышает температуру системы. Приблизительно так расширяется газ в двигателях внутреннего сгорания. В двигателях Дизеля горючий газ сжимается в 15 раз. Кратковременное повышение температуры позволяет горючей смеси самостоятельно воспламениться.

Можно рассмотреть еще один пример адиабатического процесса - свободное расширение газов. Для этого рассмотрим такую установку, состоящую из двух емкостей:

В первой емкости имеется газ, во второй он отсутствует. Поворачивая кран, мы добьемся того, что газ заполнит весь отведенный ему объем. При достаточной изолированности системы температура газа останется неизменной. Поскольку газ не выполнял никакой работы, переменная dW = const . Выяснилось, что при прочих равных условиях температура газа при расширении понижается. Расширение газа происходит неравномерно, поэтому на диаграмме "давление-объем" этот процесс представлен быть не может.

Первое начало термодинамики является универсальным законом, применяющимся во всех обозримых процессах Вселенной. Глубокое понимание причин тех или иных превращений энергии позволяет понимать существующие физические явления и открывать новые законы.

Первое начало термодинамики

Первое начало (или первый закон) термодинамики и есть за­кон сохранения энергии. Этот закон выполняется во всех явле­ниях природы и подтверждается всем опытом человечества. Ни одно из его следствий не противоречит опыту. Закон сохранения энергии подтверждает положение диалектического материализма о вечности и неуничтожимости движения, поскольку энергия, по определению Энгельса, есть мера движения при его превращениях из одной формы в другую.

Термодинамика рассматривает преимущественно две формы, в виде которых совершается превращение энергии,- теплоту и работу. Поэтому первое начало термодинамики и устанавливает со­отношение между тепловой энергией (Q) и работой (W) при из­менении общей энергии системы (∆Q). Изменение общей энергии системы выражается уравнением (I.37).

Из постоянства запаса внутренней энергии изолированной си­стемы непосредственно вытекает: в любом процессе изменение внутренней энергии какой-нибудь системы равно разности между количеством сообщенной системе теплоты и количеством работы, совершенной системой:

Это уравнение является математическим выражением первого на­чала термодинамики, которое в данном случае имеет следующую формулировку: подведенное к системе тепло Q идет на увеличение внутренней энергии системы U и на совершение внешней работы W.

При переходе системы из одного состояния в другое внутрен­няя энергия в одних случаях увеличивается, в других - уменьша­ется. В соответствии с этим изменение внутренней энергии ∆U имеет положительный знак или отрицательный.

Первое начало термодинамики имеет несколько формулировок, однако все они выражают одну и ту же суть - неуничтожимость и эквивалентность энергии при взаимных переходах различных видов ее друг в друга.

В изолированной системе сумма всех видов энергии есть ве­личина постоянная.

Вечный двигатель первого рода невозможен, так как невоз­можно создать такую машину, которая производила бы, работу без подведения энергии извне.

Система может переходить из одного состояния в другое раз­личными путями. Но в соответствии с законом сохранения энергии изменение внутренней энергии ∆U системы не зависит от пути перехода: оно одинаково во всех случаях, если одинаковы началь­ное и конечное состояния системы. Количество же теплоты и ко­личество работы W зависят от этого пути. Однако как бы ни ме­нялись значения Q и W при разных путях перехода системы из одного состояния в другое, их алгебраическая сумма всегда оди­накова, если только одинаковы начальное и конечное состояния системы.

Уравнение первого закона термодинамики (I.39) для процес­сов, где совершается только работа расширения, приобретает вид:

Из уравнения (1.40) видно, что теплота, поглощаемая при посто­янном давлении, равна приросту энтальпии АН и не зависит от пути процесса. Из уравнения (I.40) имеем

1.41

Таким образом, энтальпию можно определять как тепловой эффект (с соответствующим знаком) процесса, протекающего при постоянном давлении.

Величиной U пользуются при исследовании изохорных процессов, протека­ющих при постоянном объеме системы, а величиной Н - изобарных процессов, протекающих при постоянном давлении. Следовательно, существенно различие между величинами Н и U только для газообразных систем. Для систем, содержа­щих вещества в жидком и твердом газообразных состояниях, величины Н и U практически одинаковы.

Следует отметить, что величины ∆Н и ∆U принято считать положительными, если в ходе процесса внутренняя энергия и энтальпия возрастают.

Обычно в таблицах термодинамических свойств веществ приводятся стан­дартные значения энтальпии, представляющие собой тепловые эффекты при по­стоянном давлении, равном 100 кПа, отнесенные к температуре 298,16 К. В хи­мической термодинамике, как и в термохимии, оперируют такими понятиями, как энтальпия образования сложного вещества из простых веществ или энтальпия раз­ложения веществ, энтальпия перехода из одного агрегатного состояния в другое и т. п. Изменение энтальпии ∆H химической реакции обычно определяют как раз­ность изменения энтальпий продуктов реакции и исходных веществ.

(как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты , переданного системе:

ΔU = A + Q ,

где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.

Из (ΔU = A + Q ) следует закон сохранения внутренней энергии . Если систему изолировать от вне-шних воздействий, то A = 0 и Q = 0 , а следовательно, и ΔU = 0 .

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q ) записывается в виде:

где A" — работа, совершаемая системой (A" = -A ).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника (т. е. только за счет внутренней энергии).

Действительно, если к телу не поступает теплота (Q - 0 ), то работа A" , согласно уравнению , совершается только за счет убыли внутренней энергии А" = -ΔU . После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа , так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится опреде-ленное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам.

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам .

Изохорный процесс.

Зависимость р(Т) на термодинамической диаграмме изображается изохо рой .

Изохорный (изохорический) процесс — термодинамический процесс, происходящий в систе-ме при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется (ΔV= 0 ), и, согласно первому началу термоди-намики ,

ΔU = Q ,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа (А = рΔV =0 ) газом не совершается.

Если газ нагревается, то Q > 0 и ΔU > 0 , его внутренняя энергия увеличивается. При охлаждении газа Q < 0 и ΔU < 0 , внутренняя энергия уменьшается.

Изотермический процесс.

Изотермический процесс графически изображается изотермой .

Изотермический процесс — это термодинамический процесс, про-исходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется, см. формулу , (Т = const ), то все переданное газу количество теплоты идет на совершение работы:

При получении газом теплоты (Q > 0 ) он совершает положительную работу (A" > 0 ). Если газ отдает тепло окружающей среде Q < 0 и A" < 0 . В этом случае над газом совершается работа внешними силами. Для внешних сил работа положительна. Геометрически работа при изотермичес-ком процессе определяется площадью под кривой p(V) .

Изобарный процесс.

Изобарный процесс на термодинамической диаграмме изображается изобарой .

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением р .

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе, согласно формуле , передаваемое газу количество теплоты идет на изменение его внутренней энергии ΔU и на совершение им работы A" при постоянном давлении:

Q = ΔU + A".

Работа идеального газа определяется по графику зависимости p(V) для изобарного процесса (A" = pΔV ).

Для идеального газа при изобарном процессе объем пропорционален температуре , в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс.

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой (Q = 0) .

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия U может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики (ΔU = А + Q ), в адиабатной системе

ΔU = A ,

где A — работа внешних сил.

При адиабатном расширении газа А < 0 . Следовательно,

,

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что дав-ление газа уменьшается более резко, чем при изотермическом процессе. На рисунке ниже адиабата 1-2, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема V 1 , до V 2 .

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Уравнение теплового баланса.

В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутрен-ней энергии какого-либо тела системы ΔU 1 не может приводить к изменению внутренней энергии всей системы. Следовательно,

Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: ΔU i = Q i . Учитывая , получим:

Это уравнение называется уравнением теплового баланса . Здесь Q i - количество теплоты , по-лученное или отданное i -ым телом. Любое из количеств теплоты Q i может означать теплоту, выделяемую или поглощаемому при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

Уравнение теплового баланса является математическим выражением закона сохранения энер-гии при теплообмене .



Что еще почитать