Основные физические величины и единицы их измерения. Физические величины и единицы их измерения

Изучение физических явлений и их закономерностей, а также использование этих закономерностей в практической деятельности человека связано с измерением физических величин.

Физическая величина - это свойство, в качественном отношении общее многим физическим объектам (физическим системам, их состояниям и происходящим в них процессам), но в количественном отношении индивидуальное для каждого объекта.

Физической величиной является например, масса. Массой обладают разные физические объекты: все тела, все частицы вещества, частицы электромагнитного поля и др. В качественном отношении все конкретные реализации массы, т. е. массы всех физических объектов, одинаковы. Но масса одного объекта может быть в определенное число раз больше или меььше, чем масса другого. И в этом количественном смысле масса есть свойство, индивидуальное для каждого объекта. Физическими величинами являются также длина, температура, напряженность электрического поля, период колебаний и др.

Конкретные реализации одной и той же физической величины называются однородными величинами. Например, расстояние между зрачками ваших глаз и высота Эйфелевой башни есть конкретные реализации одной и той же физической величины - длины и потому являются однородными величинами. Масса данной книги и масса спутника Земли «Космос-897» также однородные физические величины.

Однородные физические величины отличаются друг от друга размером. Размер физической величины - это

количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина».

Размеры однородных физических величин различных объектов можно сравнивать между собой, если определить значения этих величин.

Значением физической величины называется оценка физической величины в виде некоторого числа принятых для нее единиц (см. с. 14). Например, значение длины некоторого тела, 5 кг - значение массы некоторого тела и т. д. Отвлеченное число, входящее в значение физической величины (в наших примерах 10 и 5), называется числовым значением. В общем случае значение X некоторой величины можно выразить в виде формулы

где числовое значение величины, ее единица.

Следует различать истинное и действительное значения физической величины.

Истинное значение физической величины - это значение величины, которое идеальным образом отражало бы в качественном и количественном отношениях соответствующее свойство объекта.

Действительное значение физической величины есть значение величины, найденное экспериментальным путем и настолько приближающееся к истинному значению, что для данной цели может быть использовано вместо него.

Нахождение значения физической величины опытным путем при помощи специальных технических средств называется измерением.

Истинные значения физических величин, как правило, неизвестны. Например, никто не знает истинных значений скорости света, расстояния от Земли до Луны, массы электрона, протона и других элементарных частиц. Мы не знаем истинного значения своего роста и массы своего тела, не знаем и не можем узнать истинного значения температуры воздуха в нашей комнате, длины стола, за которым работаем, и т. д.

Однако, пользуясь специальными техническими средствами, можно определить действительные

значеиия всех этих и многих других величин. При этом степень приближения этих действительных значений к истинным значениям физических величин зависит от совершенства применяемых при этом технических средств измерения.

К средствам измерений относятся меры, измерительные приборы и др. Под мерой понимают средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря - мера массы, линейка с миллиметровыми делениями - мера длины, измерительная колба - мера объема (вместимости), нормальный элемент - мера электродвижущей силы, кварцевый генератор - мера частоты электрических колебаний и др.

Измерительный прибор - это средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдением. К измерительным приборам относятся динамометр, амперметр, манометр и др.

Различают измерения прямые и косвенные.

Прямым измерением называют измерение, при котором искомое значение величины находят непосредственно из опытных данных. К прямым измерениям относятся, например, измерение массы на равноплечных весах, температуры - термометром, длины - масштабной линейкой.

Косвенное измерение - это измерение, при котором искомое значение величины находят на основании известной зависимости между ней и величинами, подвергаемыми прямым измерениям. Косвенными измерениями являются, например, нахождение плотности тела по его массе и геометрическим размерам, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Измерения физических величин основываются на различных физических явлениях. Например, для измерения температуры используется тепловое расширение тел или термоэлектрический эффект, для измерения массы тел взвешиванием - явление тяготения и т.д. Совокупность физических явлений, на которых основаны измерения, называют принципом измерения. Принципы измерений не рассматриваются в данном пособии. Изучением принципов и методов измерений, видов средств измерений, погрешностей измерений и других вопросов, связанных с измерениями, занимается метрология.

1. Понятие величины. Основные свойства однородных величин.

2. Измерение величины. Численное значение величины.

3. Длина, площадь, масса, время.

4. Зависимости между величинами.

4.1. Понятие величины

Величина – одно из основных математических понятий, воз­никшее в древности и в процессе длительного развития подверг­шееся ряду обобщений. Длина, площадь, объем, масса, скорость и многие другие – все это величины.

Величина - это особое свойство реальных объектов или явле­ний. Например, свойство предметов «иметь протяженность» назы­вается «длиной». Величину рассматривают как обобщение свойств некоторых объектов и как индивидуальную характеристику свой­ства конкретного объекта. Величины можно оценивать количест­венно на основе сравнения.

Например, понятие длины возникает:

    при обозначении свойств класса объектов («многие окружающие нас предметы имеют длину»);

    при обозначении свойства конкретного объекта из этого класса («этот стол имеет длину»);

    при сравнении объектов по этому свойству («длина стола больше длины парты»).

Однородные величины – величины, которые выражают одно и то же свойство объектов некоторого класса.

Разнородные величины выражают различные свойства объ­ектов (один предмет может иметь массу, объем и др.).

Свойства однородных величин:

1. Однородные величины можно сравнивать.

Для любых величин а и b справедливо только одно из отно­шений: а < b , а > b , а = b .

Например, масса книги больше массы карандаша, а длина ка­рандаша меньше длины комнаты.

2. Однородные величины можно складывать и вычитать. В результате сложения и вычитания получается величина того же рода.

Величины, которые можно складывать, называются аддитив­ ными. Например, можно складывать длины предметов. В резуль­тате получается длина. Существуют величины, которые не явля­ются аддитивными, например, температура. При соединении воды разной температуры из двух сосудов, получается смесь, темпера­туру которой нельзя определить сложением величин.

Мы будем рассматривать только аддитивные величины.

Пусть: а – длина ткани, b – длина куска, который отрезали, тогда: (а - b ) – длина оставшегося куска.

3. Величину можно умножать на действительное число. В результате получается величина того же рода.

Пример: «Налей в банку 6 стаканов воды».

Если объем воды в стакане – V, то объем воды в банке – 6V.

4. Однородные величины делят. В результате получается не­отрицательное действительное число, его называют отношением величин.

Пример: «Сколько ленточек длиной b, можно получить из ленты длиной а?» (х = а : b )

5. Величину можно измерить.

4.2. Измерение величины

Сравнивая величины непосредственно мы можем установить их равенство или неравенство. Например, сравнивая полоски по длине наложением или приложением, можно установить, равны они или нет:

Если концы совпадают, то полоски имеют равную длину;

Если левые концы совпадают, а правый конец нижней полоски выступает, то ее длина больше.

Для получения более точного результата сравнения величины измеряют.

Измерение заключается в сравнении данной величины с неко­ торой величиной, принятой за единицу.

Измеряя массу арбуза на весах, сравнивают ее с массой гири.

Измеряя длину комнаты шагами, сравнивают ее с длиной шага.

Процесс сравнения зависит от рода величины: длину измеря­ют с помощью линейки, массу - используя весы. По каким бы ни был этот процесс, в результате измерения получается определен­ное число, зависящее от выбранной единицы величины.

Цель измерения – получить численную характеристику дан­ной величины при выбранной единице.

Если дана величина а и выбрана единица величины е, то в ре­ зультате измерения величины а находят такое действительное число х, что а = х е. Это число х называют численным значе­ нием величины а при единице величины е.

1) Масса дыни 3кг.

3кг = 3∙1 кг, где 3 – численное значение массы дыни при единице массы 1кг.

2) Длина отрезка 10см.

10см = 10 1см, где 10 – численное значение длины отрезка при единице длины 1см.

Величины, определяемые одним численным значением, назы­ваются скалярными (длина, объем, масса и др.). Существуют еще векторные величины, которые определяются численным значе­нием и направлением (скорость, сила и др.).

Измерение позволяет свести сравнение величин к сравнению чисел, а действия с величинами – к действиям над числами.

1. Если величины а иb измерены при помощи единицы ве­личины е , то отношения между величинами а иb будут такими же, как и отношения между их численными значениями (и наобо­рот):

Пусть а = т е, b = п е, тогда a =b <= > m = n ,

а > b < = > т > п,

а < b < = > т < п.

Пример: «Масса арбуза 5кг. Масса дыни 3кг. Масса арбуза больше массы дыни, т.к. 5 > 3».

2. Если величины а иb измерены при помощи единицы вели­чины е, то чтобы найти численное значение суммы + b ), достаточно сложить численные значения величин а и b .

Пусть а=т е, b =п е, с= k е, тогда а + b < = > т + п = k .

Например, для определения массы купленного картофеля, наcыпанного в два мешка, необязательно ссыпать их вместе и взве­шивать, достаточно сложить численные значения массы каждого мешка.

3. Если величины а и b таковы, что b = х а, где х – положитель-ное действительное число, и величина а измерена при помощи единицы величины е, то, чтобы найти численное значение величины b при единице е, достаточно число х умножить на численное значение величины а.

Пусть а = т е, b = х а, тогда b =(х т) е.

Пример: «Длина голубой полоски 2 дм. Длина желтой в 3 раза больше. Какова длина желтой полоски?»

2дм 3 = (2 1дм) 3 = (2 3) 1дм = 6 1дм = 6дм.

Дошкольники знакомятся с измерением величин сначала с по­мощью условных мерок. В процессе практической деятельности они осознают взаимосвязь величины и ее численного значения, а также численного значения величины от выбранной единицы из­мерения.

«Измерь шагами длину дорожки от дома до дерева, а теперь от дерева до забора. Какова длина всей дорожки?».

(Дети складывают величины, пользуясь их численными зна­чениями.)

Какова длина дорожки, измеренная шагами Маши? (5 ша­гов Маши.)

    Какова длина этой же дорожки, измеренная шагами Коли? (4 шага Коли.)

    Почему мы измеряли длину одной и той же дорожки, а получили разные результаты?

(Длина дорожки измерена разными шагами. Шаги Коли длин­нее, поэтому их получилось меньше).

Численные значения длины дороги отличаются из-за приме­нения разных единиц измерения.

Потребность в измерении величин возникла в практической деятельности человека в процессе его развития. Результат измере­ния выражается числом и дает возможность глубже осознать суть понятия числа. Сам процесс измерения учит детей логически мыс­лить, формирует практические навыки, обогащает познавательную деятельность. В процессе измерения дети могут получить не толь­ко натуральные числа, но и дроби.

ВВЕДЕНИЕ

Физическая величина - характеристика одного из свойств физического объекта (физической системы, явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном отношении индивидуальная для каждого объекта.

Индивидуальность понимается в том смысле, что значение величины или размер величины может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

Значение физической величины - оценка ее размера в виде некоторого числа принятых для нее единиц или числа по принятой для нее шкале. Например, 120 мм - значение линейной величины; 75 кг - значение массы тела.

Различают истинное и действительное значения физической величины. Истинное значение - значение, идеально отражающее свойство объекта. Действительное значение - значение физической величины, найденное экспериментально, достаточно близкое к истинному значению, которое можно использовать вместо него.

Измерение физической величины – это совокупность операций по применению технического средства, хранящего единицу, или воспроизводящую шкалу физической величины, заключающееся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей или шкалой с целью получения значения этой величины в форме, наиболее удобной для использования.

Различают три вида физических величин, измерение которых осуществляется по принципиально различным правилам.

К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношения типа "мягче", "тверже", "теплее", "холоднее" и т.д.

К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновению в него другого тела; температура, как степень нагретости тела и т.п.

Существование таких соотношений устанавливается теоретически или экспериментально с помощью специальных средств сравнения, а также на основе наблюдений за результатами воздействия физической величины на какие-либо объекты.

Для второго вида физических величин отношение порядка и эквивалентности имеет место как между размерами, так и между разностями в парах их размеров.

Характерный пример – шкала интервалов времени. Так, разности интервалов времени считаются равными, если расстояния между соответствующими отметками равны.

Третий вид составляют аддитивные физическиевеличины.

Аддитивными физическими величинами называются величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания

К таким величинам относятся, например, длина, масса, сила тока и т.п. Их можно измерять по частям, а также воспроизводить с помощью многозначной меры, основанной на суммировании отдельных мер.

Сумма масс двух тел - это масса такого тела, которое уравновешивается на равноплечных весах первые два.

Размеры любых двух однородных ФВ или два любых размера одной и той же ФВ можно сравнивать между собой, т. е. находить, во сколько раз один больше (или меньше) другого. Чтобы сравнить между собой m размеров Q", Q", ... , Q (m) , необходимо рассмотреть С m 2 их отношений. Легче сравнить каждый их них с одним размером [Q] однородной ФВ, если принять его за единицу размера ФВ, (сокращенно - за единицу ФВ). В результате такого сравнения получаем выражения размеров Q", Q", ... , Q (m) в виде некоторых чисел n", n", .. . ,n (m) единиц ФВ: Q" = n" [Q]; Q" = n"[Q]; ...; Q (m) = n (m) [Q]. Если сравнение выполняется экспериментально, то потребуется всего m экспериментов (вместо C m 2), а сравнение размеров Q", Q", ... , Q (m) между собой может быть выполнено только путем вычислений типа

где n (i) /n (j) – отвлеченные числа.

Равенство типа

называют основным уравнением измерения, где n [Q] – значение размера ФВ (сокращенно - значение ФВ). Значение ФВ представляет собой именованное число, составленное из числового значения размера ФВ, (сокращенно - числового значения ФВ) и наименования единицы ФВ. Например, при n = 3,8 и [Q] = 1 грамм размер массы Q = n [Q] = 3,8 грамма, при n = 0,7 и [Q] =1 ампер размер силы тока Q = n [Q] = 0,7 ампера. Обычно вместо «размер массы равен 3,8 грамма», «размер силы тока равен 0,7 ампера» и т. п. говорят и пишут более кратко: «масса равна 3,8 грамма», «сила тока равна 0,7 ампера» и т. п.

Размеры ФВ чаще всего узнают в результате их измерения. Измерение размера ФВ (сокращенно - измерение ФВ) состоит в том, что опытным путем с помощью специальных технических средств находят значение ФВ и оценивают близость этого значения к значению, идеально отображающему размер этой ФВ. Найденное таким образом значение ФВ будем называть номинальным.

Один и тот же размер Q может быть выражен разными значениями с различными числовыми значениями в зависимости от выбора единицы ФВ (Q = 2 часа = 120 минут = 7200 секунд = = 1/12 суток). Если взять две различные единицы и , то можно написать Q = n 1 и Q = n 2 , откуда

n 1 /n 2 = /,

т. е. числовые значения ФВ обратно пропорциональны ее единицам.

Из того что размер ФВ не зависит от выбранной ее единицы, вытекает условие однозначности измерений, заключающееся в том, что отношение двух значений некоторой ФВ не должно зависеть от того, какие единицы использовались при измерении. Например, отношение скоростей автомобиля и поезда не зависит от того, выражены ли эти скорости в километрах в час или в метрах в секунду. Это условие, кажущееся на первый взгляд непреложным, к сожалению, пока еще не удается соблюсти при измерении некоторых ФВ (твердости, светочувствительности и др.).


1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Понятие о физической величине

Вес объекты окружающего мира характеризуются своими свойствами. Свойство - философская категория, выражающая такую сторону объекта (явления, процесса), которая обуславливает его различие или общность с другими объектами (явлениями, процессами) и обнаруживается в его отношениях к ним. Свойство - категория качественная. Для количественного описания различных свойств процессов и физических тел вводится понятие величины. Величина - это свойство чего-либо, которое может быть выделено среди других свойств и оценено тем или иным способом, в том числе и количественно. Величина не существует сама по себе, имеет место лишь постольку, поскольку существует объект со свойствами, выраженными данной величиной.

Анализ величин позволяет разделить (рис. 1) их на два вида: величины материального вида (реальные) и величины идеальных моделей реальности (идеальные), которые относятся главным образом к математике и являются обобщением (моделью) конкретных реальных понятий.

Реальные величины, в свою очередь, делятся на физические и нефизические. Физическая величина в самом общем случае может быть определена как величина, свойственная материальным объектам (процессам, явлениям), изучаемым в естественных (физика, химия) и технических науках. К нефизическим величинам следует отнести величины, присущие общественным (нефизическим) наукам – философии, социологии, экономике и т.п.



Рис. 1. Классификация величин.

Документ РМГ 29-99 трактует физическую величину как одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Индивидуальность в количественном отношении понимают в том смысле, что свойство может быть для одного объекта в определенное число раз больше или меньше, чем для другого.

Физические величины целесообразно разделить на измеряемые и оцениваемые. Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования таких единиц является важным отличительным признаком измеряемых ФВ. Физические величины, для которых по тем или иным причинам не может быть введена единица измерения, могут быть только оценены. Под оцениванием понимается операция приписывания данной величине определенного числа, проводимая по установленным правилам. Оценивание величины осуществляется при помощи шкал. Шкала величины - упорядоченная совокупность значений величины, служащая исходной основой для измерения данной величины.

Нефизические величины, для которых единица измерения в принципе не может быть введена, могут быть только оценены. Следует отметить, что оценивание нефизических величин не входит в задачи теоретической метрологии.

Для более детального изучения ФВ необходимо классифицировать, выявить общие метрологические особенности их отдельных групп. Возможные классификации ФВ приведены на рис. 2.

По видам явлений ФВ делятся на:

Вещественные, т.е. величины, описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе относятся масса, плотность, электрическое сопротивление, емкость, индуктивность и др. Иногда эти ФВ называют пассивными. Для их измерения необходимо использовать вспомогательный источник энергии, с помощью которого формируется сигнал измерительной информации. При этом пассивные ФВ преобразуются в активные, которые и измеряются;

Энергетические, т.е. величины, описывающие энергетические характеристики процессов преобразования, передачи и использования энергии. К ним относятся ток, напряжение, мощность, энергия. Эти величины называют активными.

Они могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

Характеризующие протекание процессов во времени, К этой группе относятся различного вида спектральные характеристики, корреляционные функции и другие параметры.

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Физическая … Википедия

    Физическая величина это количественная характеристика объекта или явления в физике, либо результат измерения. Размер физической величины количественная определенность физической величины, присущая конкретному материальному объекту, системе,… … Википедия

    У этого термина существуют и другие значения, см. Фотон (значения). Фотон Символ: иногда … Википедия

    У этого термина существуют и другие значения, см. Борн. Макс Борн Max Born … Википедия

    Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

    Фотон Символ: иногда Излученные фотоны в когерентном луче лазера. Состав: Семья … Википедия

    У этого термина существуют и другие значения, см. Масса (значения). Масса Размерность M Единицы измерения СИ кг … Википедия

    CROCUS Ядерный реактор это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в … Википедия

Книги

  • Гидравлика. Учебник и практикум для академического бакалавриата , Кудинов В.А.. В учебнике изложены основные физико-механические свойства жидкостей, вопросы гидростатики и гидродинамики, даны основы теории гидродинамического подобия и математического моделирования…
  • Гидравлика 4-е изд., пер. и доп. Учебник и практикум для академического бакалавриата , Эдуард Михайлович Карташов. В учебнике изложены основные физико-механические свойства жидкостей, вопросы гидростатики и гидродинамики, даны основы теории гидродинамического подобия и математического моделирования…


Что еще почитать